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"Non-Normal Incidence State Space Model"

by

F. Aminzadeh and J. M. Mendel
Department of Electrical Engineering
University of Southern California
Los Angeles, California 90007

Abstract

The primary purpose of this paper is to extend a newly published normal

incidence state space model [Ref. 1] to the non-normal incidence case. It also

provides a synthetic seismogram for a two-dimensional point source and different

offsets. The non-nommal incidence state space model is structurally the same as

the normmal incidence state space model except that it has twice as many state

variables. Because of the mode conversion in non-normal incidence, the scalar

upgoing and downgoing waves and travel times in each layer as well as reflection

and transmission coefficients at each interface are replaced by a vector of

upgoing and downgoing waves, a vector of travel time, and matrices of reflectiom

and transmission coefficients, respectively. To obtain a two-dimensional point

source synthetic seismogram we apply a new version of Sommerfield's theorem,

which is generally used to express a three-dimensional point source in terms of

a superposition of line sources.

NTIS
ooc

UNANNO®

JUSTI It

ACCESSION for
White Section

Buff Section [J
- a
N it

BY

DISTRIB.T.2/AVAILABIITY CODES

EERE———

Dist.

A AL, and,/or SPECIAL




Introduction

Haskell [2) has developed a frequency-domain method to analyze the behavior
of layered media for a non-normal incidence (NNI) plane wave that uses a matrix
iteration procedure. His result is a synthetic seismogram in the frequency-
domain for an impulsive incident wave. This response can then be inverted back
into the time-domain. Wuenschel [3] solved this problem directly in the time-
domain for the special case of normal incidence. Frasier [4] gave the solution
to this problem in the time-domain for the general case of a plane wave.

Taking advantage of strong results behind the already developed techniques
in system theory was good motivation for Nahi and Mendel [5] and Mendel [1] to
use a state space model (sm) to generate a synthetic seismogram for the special
case of normal incidence. Because of the novelty of their approach we explain
it briefly, as follows.

A system of N layered media is depicted in Fig. 1. Each layer is
characterized by its one way travel time L and normal incidence reflectiom
coefficient T n=1,2,...N). In Fig. 1, n'(t) and y(t) denote the input to
and output of the system at interface 0. We assume un(t) and dx':(t) denote the
upgoing and downgoing waves in the nth layer, respectively, and that,waves at
the top of a layer occur at present time t. Using ray theory, waveforms

un(tﬁ'n) and dt'rbl(t) (see Fig. 1) can be written as
uﬂ(ﬂt‘) .- d;(:-tn) + (-r) un_u(t) Q)
d;ﬂ(t) = (+r) d;(t-r‘) -ty “u-t-l(t) (2)

For n = 0 Eq. (1) gives the output equation, since uo(t) 4 y(t) and
d3e) An(e); t.e.,

y(e) = 1, a(t) + (1-:0) ul(t) @A)




Since we assume the basement acts like an energy sink, no energy is returned from

it, which means that um_l(t) = 0; hence, Eq. (1) for n = N has the following fom
wetry) = rp dee-ty) %)

Assuming d‘;(t-'l’n) A d_(t) in BEqs. (2) and (4), the complete SSM for nommal incidence
(NI) plane waves in a layered earth model has the following form:

dl(ml) = -, ul(t)_+ (1+ro) n(t)
ul(:-h'l) - dl(:) + (1-rl) uz(l:)

dn(t'l-rn) = (1+r 1) d

o (t) - r iy un(t)

n-1 n

n=- 2,3,.0.N.1
un(c-l»tn) - r dn(t) + (l-rn) u tri-l(t)

de(ttry) = Qi) 4y (8) = 1y 9 (®)
uu(t-l—rn) . Clu(t) (5)

Equations (5) and (3) give the complete state al.mce representation of a layered
earth for a NI plane wave.

These results, obtained for a normal incidence SSM, lead ome to see if they
can be generalized to the non-normal incidence (NNI) case. In the following
section we develop a NNI SSM for a plane wave source, with Bo as its incident

angle. Some of Frasier's results are used in this development.

A State Space Model for

Non-Normal Incidence Plane Waves
Suppose we have a plane wave source with incident angle eo for the same

layered earth model we studied in the normal incidence case. At the bottom of

the nth layer (Fig. 2) we define




nr;(:) as downgoing P waves

Dst'l(t) as downgoing S waves

Ul’l'l(t) as upgoing P waves
E US'(t) as upgoing S waves : { 1

At the top of the (n-i-:l)'t layer we define

T

P n+1(t) as downgoing P waves
DS n-l-l(t) as downgoing S waves
UP.uﬂ(t) as upgoing P waves
us n-l-l(t) as upgoing S waves

We also define r_ and r; as the reflection coefficients from below and above the

nth interface and t_ and 1:1'l as the transmission coefficients from below and above the
uth interface. In the sequel, superscripts of p and s on reflection and
transmission coefficients denote the type of mode couversion; e.g., rﬁ % -

From the definitions of r, r', t and t' we write

DS _ . /up - 00" « D' o
atl’ " o+l|US -y ?n DS,l 0.

} the following equations at the nth interface,

| b2, () = PP UR_, () + =P US_, (&) + ¢ PP DR (e) + ¢ %P DS () (6a) :
DS, () = PP UR_, (&) + 20 US_, (e) + £ PO DR (e) + £ °° DS (0) (6b)
w () =rPPDR (0) +r T DS (e) + PP oe_, (&) + £fF DS, (0) (6¢)
us () = ::"' DR (e) + % DS (e) + ¢P® D, () + ¢2° DS, () (6d)

Ifthntrmlt:lno!thnl’andSmuinthcnthlqctuoumdtobot:md

: 1’:, respectively, then the following relations exist between primed and unprimed

variables (see Fig. 2):




—— — m e B a o e can
i
nr;(:) = nrn(:qz) (7a)
DS (t) = DS (e-t) (7b)
UP;(:) - Urn(mp @e)
Us () = usn(m:) (7d)

Substituting Eq. (7) into Eq. (6) we obtain

t
a

P, (t) = tﬁ" v, () + r:’ US, (6) +¢ PP Dl’n(t-ti) +¢ 5P Dsn(t-t:)

n
L s ss 'ps 'ss s

DS_,, (£) :f‘ TR, (&) 4220 S (e) + ¢t Drn(:-r:) +t %% Ds (¢ r;)

urn(c«:) - r;” m’n(‘*“i ) + r;’l’ °sn(‘*": ) + ::1’ W, (6) + :;" US ., (€)

s 'ps 'ss s sg
US (e+1) = T nrn(w{) +1 % DS (e4r)) + S op_ (e) + €57 Us ) (6)

If we define the following notations

.Drn(t).
D,(®) 2 lps (o)
e n .
Sar 4 RO
Lvsn(:)‘
T 4 f:.
-n s
T
L B
Pnf( Q’
t=T
(-x) A | ®
e _nsn(:-r:)‘
.01’ (t:----r§T
e-z) & [ ®
!' o Usn(t-'r?

(®)

(8a)

(8b) 1;

(8¢)

(84d)

(8e)
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o R
R = (8£)
" r’. t.' 4
K a
(] r;” r;.
. B g v : (8g)
ps ss
*a Ta
(PP P
r‘ - n a (8h) { ]
ps 88
®a *a 7
- z
|
'pp ‘sp i
t z
G . 81)
o P8 'es
) § n

then Eq. (8) can be written in the following vector form:

LIOREE S WORL S XC B 0a)
g(etx) = RID (e-1) +T T ,() (9b)

If we apply the following change of variables to Eq. (9) :
4,¢) & D (e-1) (100) |
() 4 0C) . (10b)

and write Eq. (9a) for n =» n-1, then we obtain ’
$,(5) ° Ry 5O 4T 4y ® aw |
ga(etz) = R4 () +T g, () (11b)

Equation (11) is valid for n = 2,3, ...N-1. FPor m = 1, Eq. (11b) is still valid,
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wvhile in Eq. (1la), do(t) - dn_l(t:) X should be replaced by m(t), the imput
n-

vector. PFor n = N, Eq. (1la) doesn't changa, but in Eq. (11b), the TN %h(f) term

should be eliminated, since we assume there is no return from below .»e Nth inter- ¥

face (basement). These considerations lead to the following state space equations
for a NNI plane wave source.
~ ]
il(t"'ll) Ro El(t) + TO m(t)
]
u,(t+r,) = R; 4, (c) +T; u,(t)

1( ﬁ) n-1l —m-1 ) n-1 7 )
n= 2,3 ...N-1

L) T R ) T8,

Se(t¥T) = Tyop Sg1 () + Ry Hy(®
Ge(ttng) = R} 4(0) (12)

The output equation is given by

y(t) = 'ro gl(t) + R(') n(t) (13)
where
yP(t)
) 2], e
()

and yp (t) and y'(t) denote the particle velocity. In Eq. (14) yp(t) and y’(t)
denote the particle velocity on the top of zeroth interface for P and S waves.
These particle velocities for P and S waves are measured in the direction of P and

S vectors and result from P and S wave potentials, respectively. The seismogram

equations in z and x direction are given by 1
3
’:otal [cos 8y° sin °o] y(t) = cos % yP(t) + sin LI v () (15a)
and 5 s '
Yeoeay = [8n 85, =cos $o] y(t) = sin 8, y°(t) - cos ¢, ¥ (t) (15b)

where 00 and ¢° are P and S wave angles with the normal on the top of the

zeroth interface.




Equations (12) and (15) are the complete NNI, SSM and measurement equations,

and are similar to Eqs. (5) and (3) for the normal incidence case.

If we assume that

X A [dp’ d;s “ﬁo u;i cee d§s d;’ “l?a “;]

zi A M{’ z;] ? i - 1.2,..0"

t

z A diaglZ;, 2,5 2,5 Zys oo 50 3]
where z: and z:_ are delay operators, defined by

£ £ = f(t-ri)

1 = 1’2, ...R
z; £(t) = f(t-t;) :

then Eqs. (12) and (15) can be written as
27l x(t) = AX(t)+bat(e)

- cx(t) +d of(t)

In Eqs. (20) and (21) we have agssumed the input source to be of the form

at) = ["p(‘)]
0 :

This is in accordance with practical experiments which use a compressional source.

The explicit forms of A, b, ¢ and d for a special case of a two—-layer earth

model are given in the following example.
Example: The NNI, SSM for a two-layer model is:

Herd) = £gf Fe) + 5l (o) + £ 2 e)

L]
1)

- rg. ui(t) + ® u;(t) + c'p' np(t)

S
dl (t+ 0 0

@16)

ar)

@18)

(19)

(20)

(21)

22)




@ (e) = PP £

PP Pe) + e S0) +r PP E(e) +x

sp
2 % € (®)

'
1
'

i

u’l(t-H’l) - tPs up(t) + t;s u’z(t) + r;

2 % PPdie)+r

s8 .8
&)

CACANERE L JOR r;" up (£) + t;p"' & (e) + t;’p d] ()

d;(m’z) - f J;(:) i u;’(:) + ci"s d";(:) + :1'” d’l(:)

u‘;(c-n‘z’) - dpz(t) + 5P d‘;(:)

2 2
ui(:-a-r’z) - :;” d‘;(t) + r;" d'z(:) (23)

The measurement equation is given by

¥Eoaile) = (cgp cos 8, + :;p sin ¢p) '};(c) +

(t%’ cos 00 + tgs sin ¢o) ui(t/) +

(:;” cos 8, + r;"’ sin ¢) o (t) (24)

‘ Using definitions given by Eqs. (16), (17) and (18), Eqs. (23) and (24) can be

written as in Eqs. (20) and (21) with A, b, ¢ and d given by

| -
|

a 0 rg" z;" 0 0 0 0
0 0 rg’ :3' 0 0 0 0
|
“ ] ]
“ PP sp PP ,SP
| T r,Pio0 o o 0 - - A

(25)




- nmﬂ'

-9-
‘s 'sp
b=t "o|° o,o oloo
c = [o 0 ! tg’ cos 8, + to sin ¢ tg cos 8, + ty sin ¢, g 0 ol 0 o] @7 b
and
?
PP sp
d = r, cos 8, + T, sin ¢0 (28)

Evaluation of System Parameters

In this section we evaluate the parameters of the system given by Eqs. (12)
and (15). The travel times of P and S waves in different layers are a function of
8, and ¢1. i=1,2,...N which are the angles of direction of propagation of P and
S waves with respect to the normal in different layers. This is because of the
fact that, in the plane wave case, for each layer there is unique anglesassociated
with P and § waves. Given the incident angle of the plane wave source, 8 0’ the
angles On and ¢n are uniquely determined by Snell's law, using the velocity
information of the subsurface. Knowing Gn, ¢n and hn, v: and v: (the thickness and

the P and S wave velocities of the nth layers, respectively), we calculate I-n’

n=1,2,...N, defined by Eq. (8¢c), from

'r: = h_ cos On/vs (29)
s
r: = hn cos «pn/vn 30)

The r: and r: are the travel times in nth layer for P and S waves assuming that

the measurement is made at n = 0. For example, tf is half of the time in which

path 01'21 of Fig. 3 1is traveled. From Fig. 3 it is straightforward to show that

<P satisfies Eq. (29). (P 1 OF +FE;  OF + OF-cos 2 61

1 g o T vl

h h
W (1L + cos 2 01) -;; cos 01). The proof of Eq. Q9) for £ > 1 and the




proof of Eq. (30) is similar. ?or measurements made at X = 0, we can obtain the
actual seismogram at x = X, by using the following property of plane waves;
(shifting property):

Shifting property: For an incident plane wave, relocating the sensors by an

amount x, affects the received signal by a phase shift of xI/Ce where C, 1is the
(0] 0

phase velocity and is a function of the incident angle of the source, eo.

Proof: We just showed that if we make the measurement at x = (at 0 in

Fig. 3) then the travel time is the time in which the distance of OFE1 is traveled.

On the other hand, if the measurement is made at a nonzero offset, say at E, then

from Fig. 3, an extra distance, EE, should be traveled. For a P wave this takes

1
rdelay secondg, where

tdelay " EEl/vi (1)

From geometry we have

EEl = OE sin 81 .

Substituting this expression into Eq. (31), we obtain

Tty OE/(v3/sin 8,) -

From Snell's law, VE/sin 61 is the phase velocity and is a function of incident

angle 60 (Ca ). Assuming OE = x, we obtain

=
0 sin 90

tdelay xllceo (32)
which concludes the proof.

The computation of A, b, ¢ and d requires knowledge of Rn, Tn’ R; and T; for
n=0,1,...N. Although the continuity equations of particle velocity and stress,

(%, %. Tas® Tas ), are the usual tools used to compute the reflection and

zZ
transmission coefficient matrices, they require the inversion of 4 x 4 matrices,

p- pronE— PR p— T —




e —

which is not desirable. Fraa:l.ei: [4] has developed the following relatioms to

compute 'rl'l and Rt"; they only require the inversion of 2 x 2 matrices

=1 =1 =1 =%

Tx': R LtH'l (Bn Bn-'-l > An An-i-l) I'n
R T g VO W g 6
where
: Fa a0
b /onss
F'.q: 1
A = s
W
.;1 q:
Bn o Vn 2 s
%0 Ta 2p0.C 7 ;e

P . /(5o
4 vp)
n
@ = %)y -1
v
n
S
v
n 2
2(?)

for n = 0,1,2,...N. In these equations, Py is the density of the nth layer and ¢

stands for t:e . To compute R o and 'l'n we can interchange the indices of n and n+l
0

in the right-hand side of Eqs. (33) and (34). We can also use the following

relations given by Frasier [4].

A%
e et At W SO R T = wr oot

@33)

(34)

(35)

(36)

@37

(38)

39)

(40)
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'T ’
'l.'n = 'rn 41)
~ b ]
B == R T 42)
v: vl:z p s
] — —
Using Snell's law ( = sin ¢n and . sin en ), we express s 9 and Yp?
(n=0,1,2,...N) in terms of ei and ¢i’ and Pys 1i=1,2,...N, as
qi = cotg en (43)
q: = cotg ¢ (44)
and
Y, = cos2 ¢n (45)
Substituting ¢, q: and y_ from Eqs. (43), (44) and (45), into Eqs. (35), (36) and
(37), we obtain
P
Pa cotg Gn 0
B (46)
e
E 0 P cotg ¢ o
-cotg en 1
An - 2 &7)
L.2 oy sin ¢n cotg en P, cos z ¢n
Ff F -1 -cotg °n
; B, = (48)
_-pn cos 2¢n Pa s:mzq;n
It is interesting to note that, in the case of normal incidence, these expressions
reduce to well-known normal incidence relationships:
| I T I L R 49)
{ n n n n n n n n
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Derivation of a 2-D Point Source Seismogram

In the pfevim section we developed a NNI seismogram for a plane wave source
with an incident angle Aeo. Although a plane wave source physically can be
approximated by a group of point sources, an exact plane wave source doesn't exist.
Most of the sources used in exploration geophysics are point sources. Conse-
quently plane wave source techniques are not suitable for practical problems and
are mostly of a theoretical value.

As the first step towards obtaining a more realistic seismogram, we introduce
the idea of 2-D point source. The derivation of a 3-D point source seismogram
from a 2-D point source seismogram remains to be studied. v

In this section we obtain a two-dimensional point source seismogram from our
NNI plane wave seismogram. A complete algorithm for obtaining our 2-D point
source synthetic seismogram is given at the end of this sectionm.

To obtain the 2-D point source synthetic seismogram, we use a theorem similar
to one which is given by Sommerfield [Ref. 6] which expresses a point source as a
superposition of line sources.

Theorem 1: A cylinderical line source can be considered as the superposition
of plane waves, whose incident angles range from - -'2'- to -% » and refractive waves
which can be thought of as plane waves with complex incident angles.

Before proving this theorem we present three diff\erent representations of a
wave for a pressure field, the first in spherical coordinates, the second in

cylinderical coordinates and the third in cartesian coordinates:

-mqn
¥ (e,R) = & . (50)
R
tz(t.z,r) - Jockar) .-v|=| gor (51)
.ik(ct-z-ay-bz) (52)

*3(‘;3 3¥s2) =

T e e AR TP 4P SN BTN -, A )% AT TN T o O T T A P I S




Y

Ewing et al [6] have shown that wl(t,R) given by Eq. (50) can be expressed in

terms of wz(:,z,r) given by Eq. (51), using weighted travel times; i.e.

-ikR @
%e L S I 3, 0k2) 2l pay ax

(53)
0
where
k
F(k) = L (54)
e Y

Theorem 1 demonstrates the possibilities of relating wz(:.r.z) to w3(t,x,y,z).
through a superposition relatiomship.

Proof of Theorem 1: We start with the following representation of a

cylinderical wave-front

bo(rst) = Hik ) e (55)

shiace Hg(kar) is a Hankel function of the second kind that is related to Bessel

functions of the first and second kind. (To see the relationship refer to [8].)

The time-varying part of Eq. (55) appears in the plane wave representation
too, so we exclude that term in our derivation, and show that

doo - 4

exp [iku(-x sin 8-z cos 0)] dé

+ [3—!- r ¢ 3] (56)
L k v

The first term in the r.h.s. of Eq. (56) represents a sum of plane waves with
incident angles which range from - -% to -g- (the reflection terms), while the second
term can be considered due to so-called non-real incident-angle plane waves with

real v, which are attenuated as z increases (refracted waves) .
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According to [Ref. 7], from the definition of Hankel function, we can write
l:(kcr) in the following form

I:(kcr) = --1% Io ‘-vlzl cos kx % (57)

For 2z > 0 we have

l%(kar) = --i%- ] ™. cos kx dk

0 v
[_J
- -1% r cwzconkx—-l--z—if ..“ ¢:¢ul:xle
™ v
0 k
a
1 [Ra -veikx ak 21 [® - dk
o Laov —+-—J e "% coskx =
" v LI v
a a

4
7 =ik . (-Xsin 6- s 0 -
ljzgk"(x. s )d0+2%fcw:co.kx%
k

< a

where wve have made use of the fact that k = ka sin 0 and vz = kz-k: . This

completes the proof of theorem 1.

Our seismogram consists only of the first term of Eq. (56) and so it is
called a 2-D point source reflection synthetic seismogram (2D-PSRSS). The term
in brackets in Eq. (56) is the refractional component because it is due to so-
called complex incident angles. These waves are known as inhomogeneous plane
waves.

Next we summarize the algorithm used to obtain a two-dimensional point source
reflection synthetic seismogram (2D-PSRSS) from a NNI plane wave seismogram.
Figure 4 shows the different steps of the fcllowing algorithm.

Step 1: (Initialization): Set j = 1l end 0, = -Z and J, = 0, 1 = 1,2,...K

3

Oj is the incident angle of the plane wave source and Zi is the 2D-PSRSS in the

P
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final step for offset x = xR is the total number of traces.

Step 2: Obtain a NNI plane wave seismogram for 9_1' measured at o = 0. Call

this seismogram F(t,0,,0). Set k = 1.

b
Step 3: Use the shifting property to obtain the output F(t,0 3 ’“k) at x = x
Set JL =] + P(.0,.%).

Step 4: Set k = ktl. If k is less than or equal to K go to step 3.

k.

Step 5: Set j = j+1 and °_1 = ej-l + 40 (A6 is an angle increment chosen a
priori). If 6, is less than § go to step 1.

tep 6: Set J = 3-1, divide [ by J, k = 1,2,...K.
When we reach step 6 we have K traces each one of which is the 2D-PSRSS
for offsets x = X k=12, ... K.
Note. Because of the given structure of the subsurface we might
reach the critical angle § for 8] < 12'- . In that case we have to modify

our algorithm to exclude any possible imaginary angle in some layers.

s.tmla.tion Results

We have used our algorithm to cbtain a NNI plane wave seismogram and

a 2-D point source reflection seismogram for an acoustic medium as well as
an elastic medium. The simulation results for acoustic and elastic cases
are for models with specifications given in Tables 1 and 2, respectively.

Figures 5 and 6 are the NNI plane wave seismograms for incident angles
O.,2.5....,22.5. for acoustic and elastic media, respectively. We notice
that the plane wave seismogram for the acoustic case is identical for
different incident angles except for a change in arrival times (the variation
of reflection coefficients is not considerable). In the elastic case as we
increase the incident angle some new reflections which are due to mode

conversion appear in the seismogram. The NNI plane wave seismogram in the




ol

.
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x direction, for the elastic case, is shown in Figure 7. We also notice that
for zero incident angle the results of acoustic and elastic cases in the 2z
direction (the first trace in Figures 5 and 6) are identical. Also the x
direction component of elastic model for NI is identically zero.

We have also generated 2-D point source synthetic seismograms for both
acoustic and elastic models. The measurements are assumed to be at x = 0, 100,
eees 800 ft. Figures 8 and 9 are the results of the simulation for a 2- and
3-layer acoustic model. As we notice from Pigures 8 and 9 the set of peaks
of each arrival (primarv or multiple) has a hyperbolic form in the x-z plane.
The exponential decay for each arrival is in accordance with the results given _
by Dampney [10] for a 2-D point source.

Pigures 10 and 11 are the results of simulation for a 2-layer elastic
model in 2- and x-directions, respectively. The hyperbolic characteristics
of peaks in the x-z plane is still recognizable. If the travel times of P and
S waves were not too close we could have seen hyperbolas with different

concavity for P and S waves, more clearly.
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Table 1

acoustic model used in our simulations

velocity
(ft/sec)

10000

2000
1900
1200
1700

The

ecificat

of the

density

12

2.

4

2.1

2.7

The specification of

the elastic model used in our simulation

P wave
velocity

ft/sec

10000
2000
1900
1200

1700

S wave
velocity

ft/sec

9000

1700

1600

1000

1400

density
g/emd

12

2.4

2.1

2.7

NI

NI travel time
(sec)

0.14
0.26
0.18

travel time

sec

0.14

0.26

0.18
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usions

In this paper we have presented a state space approach for obtaining a NNI
Plane wvave synthetic seismogram. This method compared to Haskell's frequency-
domain [2] approach and Frasier's transfer function approach [4] bas more
potential flexibility in applying new seismic data processing techniques such as
Kalman filtering and optimal emoothing [Ref. 8], Bremmer series decomposition
[Ref. 1] and multiple suppression [Ref. 9]. Purthermore, our MNI synthetic
seismogram is in a suitable form to derive the 2-D point source synthetic
seismogram.

Our 2-D point source synthetic seismogram, to the best of our knowledge, is
an original ome.

We have applied the idea of Bremmer series decomposition [Ref. 1] to our
NNI plane wave as well as our 2-D point source seismogram. These results as
vell as suppression of multiples for a NNI plane wave synthetic seismogram are"
the subject of another paper.

We are also planning to use some parameter estimation techniques to estimate
the parameters of the system by minimizing the square of the difference between
the output of the two~dimensional point source reflection synthetic seismogran
and the output of a seismogram which is obtained using estimated parameters. We
vill also use the synthetic seismogram obtained by our algorithm for the design
of a new multichannel optimal smoother, the general case of the one given by
Mendel and Kormylo [Ref. 8]. The output of such a multichannel smoother is a
set of daconvolved , noise free estimates of the reflectivity sequence for
different offsets. Other seismic dats processing techniques such as, stacking,
N0 correction, sultiple suppression and velocity estimation can be applied to
the output of the multichannel optimal smoother. The results of this study will
also be the subject of a future paper.
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